nelderMeadModify¶
- lsst.ts.wep.deblend.nelderMeadModify(func, x_start, args=(), step=0.1, no_improve_thr=1e-05, no_improv_break=10, max_iter=0, alpha=1.0, gamma=2.0, rho=-0.5, sigma=0.5)¶
Optimization of the Nelder-Mead algorithm.
Parameters¶
- funccallable
Function to optimize, must return a scalar score and operate over a numpy array of the same dimensions as x_start.
- x_startnumpy.ndarray
Initial position.
- argstuple, optional
Additional arguments required by func. (the default is ().)
- stepfloat, optional
Look-around radius in initial step (the default is 0.1.)
- no_improve_thrfloat, optional
Break after no_improv_break iterations with an improvement lower than no_improv_thr (the default is 10e-6.)
- no_improv_breakint, optional
Break after no_improv_break iterations with an improvement lower than no_improv_thr (the default is 10.)
- max_iterint, optional
Always break after this number of iterations. Set it to 0 to loop indefinitely (the default is 0.)
- alphafloat, optional
Reflection parameter of the algorithm. (the default is 1.)
- gammafloat, optional
Expansion parameter of the algorithm. (the default is 2.)
- rhofloat, optional
Contraction parameter of the algorithm. (the default is -0.5.)
- sigmafloat, optional
Reduction parameter of the algorithm (the default is 0.5.)
Returns¶
- tuple
Best parameter array and best score for the evaluated function.